1. Dynamic Key-Value Cache:
- Maintain a persistent KV cache for autobiographical content that updates via:
- Linear gating:
- Content-aware update rules learned through backpropagation
- Linear gating:
2. Positional Encoding Strategies
Hierarchical Positional Embeddings:
- Implement dual positional encoding streams:
- Autobiographical Position: Use learned positional embeddings with windowed attention
- Main Context Position: Apply RoPE (Rotary Position Embedding) for better length extrapolation
Component | Encoding Type | Dimensions | Interaction Mechanism |
---|---|---|---|
Autobiography | Learned + Windowed | 64 | Content-aware gating |
Main Context | RoPE | 128 | Standard self-attention |
Position-Aware Layer Norm:
- Modify layer normalization to separately process positional signals:
class BioAwareLayerNorm(nn.Module):
def __init__(self, hidden_size):
super().__init__()
self.main_norm = nn.LayerNorm(hidden_size)
self.bio_norm = nn.LayerNorm(hidden_size//2)
def forward(self, x):
bio, main = x.split([x.size(-1)//2, x.size(-1)//2], dim=-1)
return torch.cat([self.bio_norm(bio), self.main_norm(main)], dim=-1)